Minimum Distance Estimators for Nonparametric Models with Grouped Dependent Variables

نویسنده

  • Mitali Das
چکیده

This Version: January 2002 This paper develops minimum distance estimators for nonparametric models where the dependent variable is known only to fall in a specified group with observable thresholds, while its true value remains unobserved and possibly censored. Such data arise commonly in major U.S and U.K data sets where, e.g., the thresholds between which earnings fall are observed, but not its level. Under minor regularity conditions identification of such a model is shown to depend on there being at least two thresholds when the model disturbance’s distribution is smooth and invertible. Estimators are motivated by conversion of the model into a set of binary choice models, each corresponding to one finite-valued threshold. This conversion illustrates that the difference of any two thresholds from a function that depends on identified components is identically zero; the function of interest is an additive component of this identity. Minimum distance estimators for possibly nonlinear functionals of the model are proposed, and shown to be consistent with a limiting distribution that is Gaussian. Estimators of the covariance matrix are provided. The estimators are applied to estimation of a problem in labor economics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables

We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...

متن کامل

Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Generalized Residuals

This paper studies nonparametric estimation of conditional moment models in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators which are minimizers of a penalized empirical minimum distance criter...

متن کامل

SIEVE QUASI LIKELIHOOD RATIO INFERENCE ON SEMI/NONPARAMETRIC CONDITIONAL MOMENT MODELS By

This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals. These models belong to the difficult (nonlinear) ill-posed inverse problems with unknown operators, and include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is generally difficult to verify wh...

متن کامل

Nonparametric Maximum Likelihood Density Estimation and Simulation-Based Minimum Distance Estimators

Indirect inference estimators (i.e., simulation-based minimum distance estimators) in a parametric model that are based on auxiliary nonparametric maximum likelihood density estimators are shown to be asymptotically normal. If the parametric model is correctly specified, it is furthermore shown that the asymptotic variance-covariance matrix equals the inverse of the Fisher-information matrix. T...

متن کامل

Nonparametric Regression for Dependent Data in the Errors-in-Variables Problem

We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002